Counterintuitive issues in the charge transport through molecular junctions.

نویسنده

  • Ioan Bâldea
چکیده

Whether at phenomenological or microscopic levels, most theoretical approaches to charge transport through molecular junctions postulate or attempt to justify microscopically the existence of a dominant molecular orbital (MO). Within such single level descriptions, experimental current-voltage I-V curves are sometimes/often analyzed by using analytical formulas expressing the current as a cubic expansion in terms of the applied voltage V, and the possible V-driven shifts of the level energy offset relative to the metallic Fermi energy ε0 are related to the asymmetry of molecule-electrode couplings or an asymmetric location of the "center of gravity" of the MO with respect to electrodes. In this paper, we present results demonstrating the failure of these intuitive expectations. For example, we show how typical data processing based on cubic expansions yields a value of ε0 underestimated by a typical factor of about two. When compared to theoretical results of DFT approaches, which typically underestimate the HOMO-LUMO gap by a similar factor, this may create the false impression of "agreement" with experiments in situations where this is actually not the case. Furthermore, such cubic expansions yield model parameter values dependent on the bias range width employed for fitting, which is unacceptable physically. Finally, we present an example demonstrating that, counter-intuitively, the bias-induced change in the energy of an MO located much closer to an electrode can occur in a direction that is opposite to the change in the Fermi energy of that electrode. This is contrary to what one expects based on a "lever rule" argument, according to which the MO "feels" the local value of the electric potential, which is assumed to vary linearly across the junction and is closer to the potential of the closer electrode. This example emphasizes the fact that screening effects in molecular junctions can have a subtle character, contradicting common intuition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study of charge transport through organic thin films: mechanism, tools and applications.

In this paper, we discuss the current state of organic and molecular-scale electronics, some experimental methods used to characterize charge transport through molecular junctions and some theoretical models (superexchange and barrier tunnelling models) used to explain experimental results. Junctions incorporating self-assembled monolayers of organic molecules - and, in particular, junctions wi...

متن کامل

Studying the effects of pH and molecular charge on the passive and iontophoretic permeation of L-phenylalanine through cellulose acetate membrane

  Iontophoresis is one of the skin permeation enhancement methods involving the transport of drugs through the skin under the effect of electrical current. The effect of molecular charge on the iontophoretic permeation of drugs has not been completely understood yet. Therefore the effect of passive and iontophoretic permeation of L-phenylalanine at pH 3.6 (positive charge) and pH 8 (negative ch...

متن کامل

Transverse charge transport through DNA oligomers in large-area molecular junctions.

We investigate the nature of charge transport in deoxyribonucleic acid (DNA) using self-assembled layers of DNA in large-area molecular junctions. A protocol was developed that yields dense monolayers where the DNA molecules are not standing upright, but are lying flat on the substrate. As a result the charge transport is measured not along the DNA molecules but in the transverse direction, acr...

متن کامل

Foundations of Molecular Electronics — Charge Transport in Molecular Conduction Junctions

The most fundamental structure involved in molecular electronics is a molecular transport junction, consisting of one (ideally) or more molecules extending between two electrodes. These junctions combine the fundamental process of intramolecular electron transfer with the mixing of molecular and continuum levels at the electrodes and the nonequilibrium process of voltage-driven currents. Much o...

متن کامل

Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions.

We present a combined experimental and computational study that probes the thermoelectric and electrical transport properties of molecular junctions. Experiments were performed on junctions created by trapping aromatic molecules between gold electrodes. The end groups (-SH, -NC) of the aromatic molecules were systematically varied to study the effect of contact coupling strength and contact che...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 46  شماره 

صفحات  -

تاریخ انتشار 2015